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Part 1.

Unique mRNA expression of
OCC1 in primate visual cortex.




INTRODUGTION

Brodmann's “cortical area”

rostral




INTRODUGTION

Cerebral cortex used to be referred as
“isocortex”, based on the homogeneous

structure. l

However, it has been shown that cerebradl
cortex is iNn various ways, e.g.
dendrific field and the degree of plasticity.

We explored how primate cerebral cortex is
heterogeneous in terms of gene expression.
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1: FDA (prefrontal cortex)
2: FA (primary motor cortex)
3: TE (temporal cortex)

4: OA (parietal cortex)
5: OC (occipital cortex) Tochitani, et al. (2001) Eur J Neurosci



Tochitani, et al. (2001) Eur J Neurosci
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Takahataq, et al. (2006) Cereb Cortex
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Visual pathway is especially well-developed in primates.

Ghost Bat

S: Somatosensory Cortex

A: Auditory Cortex
V: Visual Cortex

Krubitzer, (2000)



Mouse

Ferret

Rabbit

dorsal

rostral ’

Takahata et al. (2006) Cereb Cortex




OCC1 and its related genes encode extracellular matrix proteins.
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Testican-1

Testican-2

Takahata et.al. Cereb Cortex (2009)



Quantification of the mRNA expression of OCCI1-
related genes in 5 cortical areas (QRT-PCR)
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Takahata et.al. Cereb Cortex (2009)



Watakabe. ef.al.
Cereb Cortex
(2009)




Komatsu. et.al. (2005) Cereb Cortex
Yamamori and Rockland (2006)
Neurosci. Res.



Heterogeneous gene expressio
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Yamamori and
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OWL MONKEY GALAGO
Takahata et.al. Cereb Cortex (2012)
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Takahata et.al. Cereb Cortex (2012)



Elston (1997) Cereb Cortex

Possible importance of area-
selective gene expression

l

Area difference of
dendrite extension
!

Area difference of
recepftive field
!
Hierarchy of primate
visual cortices
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Part 2.

Discovery of border strips in macaque V1
through immediate-early gene expression
patterns.




Rakic (1977) Philos Trans R Soc Lond B Biol Sci
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Ocular dominance columns are most studied in macaques.

left

right area 17(V1) hemisphere

hemisphere

Ocular
dominance
columns
(ODCs)

dLGN

opftic
chiasm

right left
eye eye
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Ocular dominance columns are most studied in macaques.
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Right Striate Cortex I_

CO histochemistry

[3H] Proline

Horton and Hocking (1998) J Neurosci

macaque V1



The expression of
iImmediate-early
genes are regulated
by neuronal activity.
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Schematic changes of gene expression changes
after monocular inactivation.

Neltgglel Acute (1-3h) Late (>5h)

TTX

Takahataq, et al., (2009) Proc Natl Acad Sci USA



Left eye RF Right eye RF

Lateral inhibition = L
between the two eyes
Is required to form L’ '

“binocular-disparity
coding neurons.”
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7 macaque, 1h TTX, layer |V, zif268

DC: dark
column

PC: pale
column

BS: border strip




Part 3.

Cross species comparison of
ocular dominance columns.




Squirrel monkey

Adams and Horton (2003) Naf Neurosci



Ocular dominance columns in New World monkeys.

Owl monkey

Kaas and Casagrande, (1976) Brain Res



marmoset

Brain Research, 488 (1Ux4y 37

BRE 23526

Loss of ocular dominance columns with maturity in the monkey,
Callithrix jacchus

W.B. Spatz

Department of Qto-Rhino-Laryngology, Morphological Brain Research, Freiburg (FR.G.)

(Accepted 14 February 1989)

Key words: Marmoset monkey; Primary visual cortex; Ocular dominance column; Postnatal ontogenesis

Previous studies have shown that adult marmosets lack ocular dominance columns (ODC) in area 17, but that ODCs can be
demonstrated upon visual deprivation. The present results, obtained by transneuronal transport of WGA-HRP, indicate that ODCs
normally develop in juvenile marmosets but disappear before the animal reaches maturity. The findings suggest that formation of
ODCs during ontogenesis, and their persistence through adufthood, are different developmental processes depending on different
mechanisms.

Spatz, (1989) Brain Res
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PHILOSOPHICAL

TRANSACTIONS Phil. Trans. R. Soc. B (2005) 360, 837-862

d0i1:10.1098/rstb.2005.1623
Published online 29 April 2005

The cortical column: a structure without
a function

Jonathan C. Horton™ and Daniel L. Adams
Beckman Viston Center, 10 Koret Way, Untversity of California, San Francisco, CA 94143-0730, USA

This year, the field of neuroscience celebrates the 50th anniversary of Mountcastle’s discovery of the
cortical column. In this review, we summarize half a century of research and come to the disappointing
realization that the column may have no function. Originally, it was described as a discrete structure,
spanning the layers of the somatosensory cortex, which contains cells responsive to only a single
modality, such as deep joint receptors or cutaneous receptors. Subsequently, examples of columns
have been uncovered in numerous cortical areas, expanding the original concept to embrace a variety
of different structures and principles. A ‘column’ now refers to cells in any vertical cluster that share
the same tuning for any given receptive field atrribute. In striate cortex, for example, cells with the
same eye preference are grouped into ccular dominance columns. Unaccountably, ocular dominance
columns are present in some species, but not others. In principle, it should be possible to determine
their function by searching for species differences in visual performance that correlate with their
presence or absence. Unfortunately, this approach has been to no avail; no visual faculty has emerged
that appears to require ocular dominance columns. Moreover, recent evidence has shown that the
expression of ocular dominance columns can be highly variable among members of the same species,
or even in different portions of the visual cortex in the same individual. These observations deal a fatal
blow to the idea that ocular dominance columns serve a purpose. More broadly, the term ‘column’
also denotes the periodic termination of anatomical projections within or between cortical areas. In
many instances, periodic projections have a consistent relationship with some architectural feature,
such as the cytochrome oxidase patches in V1 or the stripes in V2. These tissue compartments appear
to divide cells with different receptive field properties into distinct processing streams. However, it is
unclear what advantage, if any, is conveyed by this form of columnar segregation. Although the
column is an attractive concept, it has failed as a unifying principle for understanding cortical
function. Unravelling the organization of the cerebral cortex will require a painstaking description of
the circuits, projections and response properties peculiar to cells in each of its various areas.

Keywords: spandrel; barrel; angioscotoma; retinal wave; pinwheel; macaque

Horton and Adams (2005) Phil Trans R Soc B
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WIKIPEDIA Ocular dominance column

The Free Encyclopedia From Wikipedia, the free encyclopedia

i 121
Ocular dominance columns are s or the other.!*! The columns

span multiple cortical | and a out in a striped patt

Ocular dominance columr nportant in early studies of cortical y. as it was at monocular deprivation causes the columns to degrade, w ye assuming
control of more of the ¢ 2

It is believed that ocular dominance columns must be important in binocular vision. Surprisingly er, many - ither lack or partially lack ocular dominance columns, which

would not be expected if they are useful. This has led some to question whether they serve a pur or are just a ent.!*

Contents [hide]

“Surprisingly, however, many squirrel monkeys, either lack or
partially lack ocular dominance columns, which would not be
expected if they are useful. This has led some to question
whether they serve a purpose, or are just a byproduct of
development.”



Marmoset
Owl monkey

Kaskan et al. (2007) Front Neurosci

Roe, et al. (2005) Anat Rec A



Expression of immediate-early gene clearly represent
ocular dominance columns in owl monkeys!

Owl monkey, V1,
24 h-monocular
inactivation, ISH
for c-FOS

Takahata, et al., (2014)
Proc Natl Acad Sci USA

Layer 2/3




(]
Dark columns

0
Pale columns

Takahataq, et al. (2014)
Proc Natl Acad Sci USA

Obviously, CO staining is not good enough to conclude
absence of ODCs.



Patchy or stripe-like representation of ODCs can be
explained by computer simulation.

ww g

Fig. 5. Computer-simulated ocular domi
imbalanced  activities. Paramet 1!

Arrows show the dir

axis gives the value of afq.
/g is changed in the simula-

tions. Note a kind o s; the emerging patterns depend upon

the preceeding sequence of patterns. Therefore, two different patterns,
the blob and stripe, are obtained even at the same afg = 1.0 since
their initial patterns are different. An asymmetric stripe pattern
remains during the increase from 0 to a large «/g value. But on the
way back, a blob-lattice pattern is maintained up to a small a/g value

Tanaka (1991) Theory of ocular
dominance column formation:
Mathematical basis and computer

simulation. Biol Cyber



Border strip-like structure was also observed in owl monkeys.

Owl monkey (1 hour-Ml)

Takahata, et al. (2014)
Border stripe Proc Natl Acad Sci USA



Summary of ocular dominance representations in owl monkey V1.

Peripheral Central

Monocular CO blob Border strip

segment

% input from the contralateral eye

9 input from the ipsilateral eye

Takahata, et al. (2014) Proc Natl Acad Sci USA
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ODCs and border strips were observed in galagos as well.

Galago (1 hour-Ml)
contralateral to blocked eye
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ODCs can be revealed by immediate-early
gene expression in marmosets as well.

Marmoset, V1

A ZIF268

Nakagami, et al. (2013) Front Neural Circuits
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Rat

Jaime Olavarria, MD.,
Ph.D.,
University of Washington




ODC-like pattern was even observed in rafs!
Rat (24 hour-Ml)

ipsilateral to the blocked eye contralateral to the blocked eye

S R T

Laing, Turecek, Takahata, Olavarria, (2014) “Eye-specific domains
correlate with patchy callosal connections in visual cortex of
Long Evans rats.” Cereb Cortex
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Ocular dominance column

From
Ocular dominance columns are stri eur hat respond preferentially to input from one or the oth
span multiple cortical 5 ). The stri perpendicular to the orientation
cular deprivation causes the columns to degrade, with the non-depri ssumin

control of more of the cortical ce

It is belie that ocular dominance columns must be important in bi \ either lack or partially lack ocular dominance columns, which

“Notably, they are also absent in many animals with
binocular vision, such as rats.”



@ A portion of New World monkeys
do not have ocular dominance
columns.

@ However, all of New World

monkeys are capable of stereopsis.
l

@ Therefore, ocular dominance

columns are not functionally

Important.

My data suggests that D is likely wrong.
Consequently, @ is also skeptical.

Functional significance of ocular
dominance columns should be

reconsidered!
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Next Questions:

How are ocular dominance importante

Why do ocular dominance columns existe

l

Think about relationship with other modailities



1Al Cortex

1. In order to achieve
depth coding, ocular
segregation is necessary
at the first (and second)

SYNApses.

Principles of Neural Science: IVth Edition
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-

Ohzawa, DeAngelis and Freeman (1996) Encoding of binocular disparity by

simple cells in the cat’s visual cortex. J Neurophysiol
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| 2 Same (similar) profile attracts each other, and tends to make clusters.

V1 neurons
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Motion,
OFF-Center,

Geniculo-cortical axons




ﬁ- " SijICII’) profile attracts each other, and tends to make clusters.

Right eye dominance,

Right eye dominance, 50" preference

30° f
preference ' ‘

Lett eye dominance, < Left eye dominance,
30° preference 50° preference



similar) profile attracts each other, and tends to make clusters.

Mandarin speaking,

Mandarin speaking, Histology major

Optogenetics major '

English speaking,

Optogenetics major < English speaking,

Histology major



Dark/bright: ODCs
Color: orientation columns
White: CO blobs



IT'has been suggested that neurons tend to locate and connect so
that they can minimize economy.
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Fig. 5. Ocular dominance patterns for f; = % and Ny =5, N, = 3. Realizations of the (a) Salt and Pepper
(I = 11.26) and (b) Stripes (I ~ 11.49) are suboptimal. (c) A realization of the L-Patch phase gives
minimal wire length (/ ~ 10.67).

Chlokovskii and Koulakov. (2000) Physica A
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'If.has peen suggested that neurons tend to locate and connect so
that they can minimize economy.

The pattern of preferred orientation and ocular dominance
combined on the same picture, which is obtained in a computer
simulation minimizing the total length of connections. The
preferred orientation is coded by color. The left-eye dominated
areas are shown by a darker color.

Koulakov, A
(Cold Spring Harbor Laboratory)
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Part 4.

Ocvular dominance layers?

Tree shrew (Tupaia belangeri)



s been suggested that right and left eye inputs are
segregated into layers, not columns in tree shrews.

Casagrande and Harting
(1975) Brain Res

Hubel (1975) Brain Res
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Right and left eye inputs are clearly segregated into
layers in LGN of tree shrews.

Conley, et al. (1984)
J Neurosci

Contralateral ' 4_]'pﬁsillc1’rerol ' C-Fos



LGN layers are segregated by ON-Center/OFF-
Center neurons, as well as ocular dominance.

Conway and Schiller (1983) Laminar organization of tree shrew dorsal lateral geniculate
nucleus. J Neurophysiol



ON-Center/OFF-Center segregation
Is maintained in V1 layers.

Fitzpatrick and Raczkowski (1990)
I Al Proc Natl Acad Sci USA
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Figure 22. Summary diagram of the major and minor projections of each of the six lateral geniculate layers.

Conley, Fitzpatrick and Diamond (1984) J Neurosci




Most of the V1 neurons are contralaterally-biased
binocular neurons.
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Humphrey, Albano and Norton (1977) Brain Res




»>ODC:s likely globally exist in all primate species.

»>There is border strip in V1 layer 4 that is conserved in primate
species.

> Even rats have ODCs.

»>Tree shrews have weird arrangement of ocular dominance and
ON-Center/OFF-Center neuron classes.

»Do not accept all the descriptions in textbooks or Wikipedia.



Possible Future Directions

» Examine orientation domains by IEG expression in various
species.

» Examine orientation domains after monocular deprivation in
juvenile animails.

» Examine OD domains after orientation deprivation in juvenile
animals.



Part 5.

Zhejiang University, Interdisciplinary
Institute of Neuroscience and Technology
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