Prospective coding in motor learning and motor decision making

Ken Takiyama

Tokyo University of Agriculture and Technology(TUAT)

Prospective coding in motor learning and motor decision making

Ken Takiyama

Tokyo University of Agriculture and Technology(TUAT)

Prospective errors determine motor learning

- a step towards a unified model of motor learning -

Takiyama, Hirashima, Nozaki, Nature Comm, 2015

Our hypothesis

The predicted movement error, prospective error, determines neural activity and motor command in motor learning.

1. Introduction

- 2. Results mathematics
- 3. Results behavioral experiment
- 4. Results fitting to conventional data
- 5. Results simulation
- 6. Conclusion
- 7. Prospective error in a competitive game

Experiment: reaching movements (unimanual) + Perturbation

These videos were offered by Yokoi-sensei.

Reaching movement

30° visuomotor rotation

"Please move the cursor towards target **as straight as possible** with a moderate movement speed."

Compatibility of simplicity in learning and complexity in control: Motor primitive (Thoroughman & Shadmehr, 2000, Nature).

Simplicity in learning … linear learning equation of W Complexity in learning … linear combination of A (nonlinear function)

<u>What determines neural activity in motor learning? ...</u> <u>No consensus.</u>

- 1. Force (Evarts, 1964, Jnp)
- 2. Desired movement direction (Georgopoulos et al., 1984, JNS)
- 3. Desired movement speed & position (Moran et al., 2007, Jnp)
- 4. Actual movement (Gonzalez-Castro et al., 2011, PLoS Compt Biol)
- 5. Aiming movement direction (Taylor & Ivry, 2011, PLoS Compt Biol)
- 6. Reward (Huang et al., 2009, Neuron)
- 7. Uncertainty (Kording & Wolpert, 2004, Nature)
- 8. Visual and proprioceptive information (Brayanov et al., 2011, JNS)

Our hypothesis: predicted errors in the upcoming movement determine neural activity

1. Introduction

- 2. Results mathematics
- 3. Results behavioral experiment
- 4. Results fitting to conventional data
- 5. Results simulation
- 6. Conclusion
- 7. Prospective error in a competitive game

Prediction of conventional models: When movement error is 0 on average ($\langle e_t \rangle = 0$), no motor learning is facilitated.

_earning rule:
$$\langle W_{t+1} \rangle = \lambda \langle W_t \rangle + \frac{\eta}{N} \langle e_t \rangle \langle A^T(\theta_t) \rangle = \lambda \langle W_t \rangle$$

However, this prediction contradicts *random learning*, or structural learning (Braun, 2009, Curr Biol).

To reproduce random learning, A should be correlated to e.

$$\langle W_{t+1} \rangle = \lambda \langle W_t \rangle + \frac{\eta}{N} \langle e_t A(\theta_t) \rangle = \lambda \langle W_t \rangle + \frac{\eta}{N} \operatorname{Cov}(e_t A(\theta_t))$$

Note: $A \rightarrow$ before the initiation of movement.

 $e \rightarrow$ after the end of movement. A cannot be correlated to e.

What are inputs x in motor learning ?

Our proposal: We predict movement error before the initiation of movement and the predicted movement error (**prospective error**) affects neural activity and motor learning.

1. Desired movement direction & prospective error.

- 2. Neural activities A. (e.g., A…Gaussian)
- 3. Motor command: $u = \sum_{i=1}^{N} W_i A_i(\theta)$

4. Modify \mathbf{W} to minimize prediction error.

5. Update prospective error. $\hat{e}_{t+1} = \hat{e}_t + \alpha(e_t - \hat{e}_t)$

- 1. Introduction
- 2. Results mathematics
- 3. Results behavioral experiment
- 4. Results fitting to conventional data
- 5. Results simulation
- 6. Conclusion
- 7. Prospective error in a competitive game

Group1…Error changes in each trial

Trial

- 1. Introduction
- 2. Results mathematics
- 3. Results behavioral experiment
- 4. Results fitting to conventional data
- 5. Results simulation
- 6. Conclusion
- 7. Prospective error in a competitive game

Wei & Kording, 2008, Jnp Larger error results in slower learning.

Prospective error hypothesis: *Large error causes difficulty in predicting error, resulting in slower learning.

- 1. Introduction
- 2. Results mathematics
- 3. Results behavioral experiment
- 4. Results fitting to conventional data
- 5. Results simulation
- 6. Conclusion
- 7. Prospective error in a competitive game

Theory 3: Multiple timescale model (Smith, 2006, PLoS Biol)

1. Savings - A-B-A paradigm, faster learning speed in relearning phase -

Trial number

- 1. Introduction
- 2. Results mathematics
- 3. Results behavioral experiment
- 4. Results fitting to conventional data
- 5. Results simulation

6. Conclusion

7. Prospective error in a competitive game

Prospective error model
1. anterograde intereference (Sing, 2010, PLoS CB)
2. spontaneous recovery (Smith, 2006, PLoS Biol)
3. relevance of error (Wei, 2009, Jnp)
4. short-term savings (Krakauer, 2000, Nat Neurosci)
5. long-term savings (Zarahn, 2008, Jnp)
6. Kalman filter (Kording, 2004, Nature)
7. structural learning (Braun, 2009, Curr Biol)

1. Based on math to reproduce random learning, we propose a novel hypothesis: *the prospective error is encoded in motor planning*.

2. Based on our behavioral experiment, we validated our prediction which any conventional model never predicts <u>- strong prediction power -</u>.

3. Our model can explain several phenomena which were separately explained by different computational models <u>- a step towards a unified model of motor</u> <u>learning -</u>.

- 1. Introduction
- 2. Results mathematics
- 3. Results behavioral experiment
- 4. Results fitting to conventional data
- 5. Results simulation
- 6. Conclusion

7. Prospective error in a competitive game

Keiji Ota (TUAT / NYU)

Is prospective coding effective when there are other players?

Ota & Takiyama, in preparation, Ota & Takiyama, 2017, SfN

Acknowledgement

(JSPS PD、NYU) Takiyama lab <u>Keiji Ota, PhD</u> (JSPS PD) Takuji Hayshi, PhD @ TUAT: Daisuke Furuki Koutaro Ishii **Collaborators**: Daichi Nozaki, PhD (Univ. Tokyo) (Nihon Univ.) Taiki Komatsu, PhD (CiNet) <u>Masaya Hirashima, PhD</u> (Univ. Tokyo) Mitsuaki Takemi, PhD (Univ. Tokyo) Shota Hagio, PhD Yasushi Naruse, PhD (NiCT) Masahiro Shinya, PhD (Hiroshima Univ.) (Jichi Med. Univ.) Takeshi Sakurada, PhD (SONY) Shin-ichi Furuya, PhD Hirofumi Sekiguchi, PhD (Jobu Univ.) Grant & fund: JSPS, Casio, Okawa information science, Nakashima international memorial, Kayamori information