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Diverse features of motor learning have been reported by numerous studies, but no

single theoretical framework concurrently accounts for these features. Here, we propose a

model for motor learning to explain these features in a unified way by extending a motor

primitive framework. The model assumes that the recruitment pattern of motor primitives is

determined by the predicted movement error of an upcoming movement (prospective error).

To validate this idea, we perform a behavioural experiment to examine the model’s novel

prediction: after experiencing an environment in which the movement error is more easily

predictable, subsequent motor learning should become faster. The experimental results

support our prediction, suggesting that the prospective error might be encoded in the motor

primitives. Furthermore, we demonstrate that this model has a strong explanatory power to

reproduce a wide variety of motor-learning-related phenomena that have been separately

explained by different computational models.
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 The predicted movement error, prospective error, determines 
neural activity and motor command in motor learning.
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Our hypothesis



④Uncertainty ⑤Error modification

Bayes model 
(Kording, 2004, Nature)

Bayes model 
(Wei, 2009, Jnp)

No model

Prospective error model

⑥Random learning

①Savings、②Interference、③Spontaneous recovery

Multi-timescale model 
(Smith, 2006, PLoS Biol)

⑦Transfer
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30° visuomotor rotation

Experiment: reaching movements (unimanual) + Perturbation

Reaching movement

Initial position

Target

Task:  
“Please move the cursor towards 
target as straight as possible with 
a moderate movement speed.”

These videos were 
offered by Yokoi-sensei.



Compatibility of simplicity in learning and 
complexity in control: Motor primitive 
(Thoroughman & Shadmehr, 2000, Nature). 

Ai(✓) = exp(� 1
2�2 (✓ � 'i)2)

Input =“desired movement direction θ”
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Simplicity in learning … linear learning equation of W 
Complexity in learning … linear combination of A (nonlinear function)



1. Force (Evarts, 1964, Jnp) 
2. Desired movement direction (Georgopoulos et al., 1984, JNS) 
3. Desired movement speed & position (Moran et al., 2007, Jnp) 
4. Actual movement (Gonzalez-Castro et al., 2011, PLoS Compt Biol) 
5. Aiming movement direction (Taylor & Ivry, 2011, PLoS Compt Biol) 
6. Reward (Huang et al., 2009, Neuron) 
7. Uncertainty (Kording & Wolpert, 2004, Nature) 
8. Visual and proprioceptive information (Brayanov et al., 2011, JNS)

What determines neural activity in motor learning? …  
No consensus. 

Our hypothesis: predicted errors in the  
upcoming movement determine neural activity

・I will succeed 
・I will fail
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cumulative error (p < 0.01, Wilcoxon rank-sum test on mean
error over the first ten trials; Figure 2F) assessing feed-forward
and feedback control. The control group and the linear random
group showedadecrement inperformance compared to that in
the last few trials in the original exposure to the+60 . This retro-
grade interference was markedly reduced for the random
rotation group (Figure 2F, red). Taken together, the results of
this experiment suggest that the experience of a single struc-
ture whose parameters vary continuously over a range leads
to both structure-specific facilitation and structure-specific
interference reduction. Furthermore, this structure-specific
performance enhancement seems to have a feedback and
a feed-forward component.

Learning of Shearings versus Rotations
To test specifically for the feedback component of structural
learning, we had two groups make reaching movements to
targets under two different visuomotor transformations that
randomly changed at the start of each reach. One group expe-
rienced random rotations (rotation angles between 2 90 and
+90 ); theothergroupexperienced randomshearings (shearing
parameters between 2 2.0 and +2.0; see Supplemental

Experimental Procedures for details). Occasional probe trials
that involved either 60 rotations or 1.5 shearings were intro-
duced for both groups. Subjects from the two groups
responded very differently for identical probe trials. For
example, when presented with a rotation probe trial, the rota-
tiongroup (red) and the shearinggroup (black) showeddifferent
hand paths (Figure 3A) and velocity profiles ( Figure 3C). Gener-
ally, performancewas fasterwhen theprobe-trial structurewas
compatible with the structure of the random trials (p < 0.001,
paired t test). Moreover, the peak positional variance across
probe trials showed a significant reduction (p < 0.005, one-
tailed F test) in probe trials that were compatible with the
learned structure, suggesting that exploration was reduced in
these trials ( Figures 3E and 3F). Although both groups might
have adopted different control strategies, importantly, both
tasks required the processing off eedback information in order
to solve them. Therefore, feedback processing must be
different in these two groups depending on previous experi-
ence. This suggests that the feedback control process is not
generic but is highly dependent on the structure that subjects
had experienced within a single trial, which argues against
a nonspecific increase in feedback adaptability.
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Figure 2. Structural Learning of Visuomotor Rotations
(A) Learning curves for a block of +60 rotation trials performed by a group that had experienced random rotations before (Rot-learner, red), a control group
that had only experienced movements with veridical feedback (blue), and a group that experienced random linear transforms (green). The rotation group
shows strong facilitation. The initial angular error over all subjects is shown with double-exponential fits.
(B) Learning curves for a subsequent block of 2 60 rotation trials performed by the same groups. The interference effect that can be seen in the control
group is strongly reduced in the rotation group.
(C) Learning curves for a subsequent block of +60 rotation trials performed by the same groups. Again, the random rotation group shows a performance
advantage in the first ten trials.
(D‒F) The same effects are much more pronounced for the cumulative error computed over the entire trajectory. Facilitation (D), interference reduction (E),
and facilitation of relearning (F) are significant. The median error over all subjects and the pertinent interquartile confidence interval are shown.
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Prediction of conventional models:  
When movement error is 0 on average (            ), no motor learning is facilitated. 

However, this prediction contradicts random learning, or structural learning 
(Braun, 2009, Curr Biol). 

�Wt+1� = ��Wt� + �
N �et��AT (�t)� = ��Wt�

Braun et al., 2009

Learning rule: 

heti = 0



To reproduce random learning, A should be correlated to e. 

Note: A → before the initiation of movement.  
e → after the end of movement. A cannot be correlated to e.
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D iverse features of motor learning have been reported by
numerous experiments, but no single theoretical frame-
work concurrently accounts for all of these features. For

example, after learning in a novel visuomotor environment
followed by a washout phase, the learning speed in the relearning
phase is faster than that in the initial learning phase. This
acceleration of motor learning has been explained by the
incorporation of fast and slow components into the motor-
learning process1. However, it remains unclear how such a multi-
learning-rate model can be extended to explain the decrement of
learning speed with increased uncertainty of feedback
information. Although a standard Kalman filter2–4 successfully
explains this uncertainty effect, it cannot explain how motor
memory can be formed and maintained even when the
environment randomly varies from trial to trial (structural
learning)5–7. Several models have been proposed to explain
structural learning by assuming that subjects have already
acquired a priori knowledge regarding the tendency of
environmental variation8,9. However, to our knowledge, few
computational models can explain structural learning without
any a priori knowledge. Thus, a single framework that can explain
such a wide variety of phenomena is currently unavailable.

Here we propose a novel model for motor learning to explain a
wide variety of phenomena in a unified way by extending a
theoretical framework of motor primitives10–15. In the original
framework, activities of motor primitives determine motor
commands, and an appropriate set of motor primitives is
recruited according to the various features of the desired
movement, such as planned movement direction10,11. This
framework successfully reproduces the basic pattern of trial-
dependent changes in the movement error and how motor
learning is generalized when the kinematics (for example,
movement direction) change.

However, the manner in which the activities of motor primitives
are determined remains controversial. In contrast to the conven-
tional idea that the desired movement direction determines the
activities of motor primitives10–12, a recent study suggested the
possible involvement of the executed movement in determining
these activities13. The model we propose in the present study
assumes that the predicted movement error of an upcoming
movement, termed the prospective error (PE), also contributes to
determining the activities of the primitives. This assumption is
based on two components: (1) a theoretical consideration regarding
the formation and maintenance of motor memory from a
randomly changing environment, and (2) recent neurophysio-
logical findings16,17 showing that some motor-related neurons
encode the PE rather than the desired or executed movements.

In the present study, first, we analytically reveal that the
activities of motor primitives need to be determined based on the

PE such that the motor memory can be formed and maintained
in a randomly changing environment. Second, to validate the idea
of incorporating the PE into motor learning, we experimentally
demonstrate a novel motor-learning phenomenon that can be
predicted by our model: after experiencing an environment in
which the movement error is more easily predictable, subsequent
motor learning should become faster. Finally, using a computer
simulation, we show that our model can account for several
different and seemingly unrelated phenomena in motor learning,
such as structural learning5–7, modulation of the learning rate
because of uncertainty of error feedback3,4, savings after short
and long washout trials18–20, anterograde interference21,22 and
spontaneous recovery1,23,24. Although different conventional
models have separately explained these phenomena, our model
is unique in that it can explain them within a single framework.

Results
General framework. The present study used a task involving
reaching towards a single target in a horizontal plane (Fig. 1a).
The goal of the task was to move a cursor to the target accurately
in a situation where an executed movement is perturbed
by a change in the environment, p, for example, the external
force generated by a manipulandum25 (Fig. 1b) or visuomotor
transformation26 (Fig. 1c). The motor command, x, to
compensate for a perturbation, p, is modelled by the
summation of the activities of the motor primitives as
x¼WAT, where W¼ (W1, ..., WN), N is the total number of
motor primitives, Wi represents how the ith primitive contributes
to the production of the motor command, A¼ (A1, ..., AN), and Ai
is the activity of the ith primitive (we propose that this be
determined depending on the PE (details are provided in the
section Prospective error)). The movement error at the t-th trial
can thus be expressed as et ¼ pt " xt ¼ pt "W tAT

t . To minimize
the squared movement error, W is modified as

W tþ 1 ¼ lW t þ ZetAt ; ð1Þ

where l is the forgetting rate and Z is the learning rate, indicating
that the more activated the ith primitive, the more the Wi is
modified to minimize the squared movement error (the stronger
the motor memory is formed in the ith primitive). Similarly, if the
ith primitive is not activated at the t-th trial, Wi is not modified
(the motor memory embedded in the ith primitive can be kept).

Theoretical considerations in randomly changing environ-
ments. First, we analytically considered the problem of what
characteristics of the movement the primitives need to encode.
We focused on the problem of how a motor memory can be
formed within a randomly changing environment. Recent works

Target
Cursor

Hand

Movement
error

Perturbation

Target
Cursor

Movement
error

Perturbation

Force field Visuomotor rotation

ba c
② Motor primitive

Perturbation

③ Motor command① Motor planning

Motor learningUpdate of prospective error ⑤⑥

④ Movement error

Figure 1 | Model schematic. (a) A schematic representation of our model. Prospective error determines activities of motor primitives, the weighted sum of
these activities determines motor commands and movement error is a learning signal for the weighting parameters and prospective error. (b ) Force
field: subjects need to move the cursor or his/her hand towards the target. (c) Visuomotor rotation: subjects need to move the cursor towards the target.
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What are inputs x in motor learning ?

Error will be -30°. 

Error will be 30°. 
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Our proposal: We predict movement error before the initiation 
of movement and the predicted movement error (prospective 
error) affects neural activity and motor learning. 
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Theory 1: Bayesian (Kording, Wolpert, 2004, Nature)

Mathematical model:

smallest mean squared error. This estimate is a weighted sum of the mean of the prior and
the sensed feedback position:

xestimated ¼
j2sensed

j2sensed þ j2prior
½1cm$þ

j2prior
j2sensed þ j2prior

xsensed

Given that we know j2prior; we can estimate the uncertainty in the feedback j sensed by
linear regression from Fig. 2a.

Resulting mean squared error
The mean squared error (MSE) is determined by integrating the squared error over all
possible sensed feedbacks and actual lateral shifts

MSE¼
ð1

21

ð1

21
ðxestimated 2 xtrueÞ2pðxsensedjxtrueÞpðxtrueÞdxsenseddxtrue

For model 1, xestimated ¼ x sensed, and this gives MSE¼ j2sensed :
Using the result for xestimated from above for model 2 gives

MSE¼ j2sensedj
2
prior=ðj2sensed þ j2priorÞ; which is always lower than the MSE for model 1. If

the variance of the prior is equal to the variance of the feedback, theMSE formodel 2 is half
that of model 1.

Inferring the used prior
An obvious choice of xestimated is the maximum of the posterior

pðxtruejxsensedÞ ¼
1

jsensed
ffiffiffiffiffiffi

2p
p e2ðxtrue2xsensed Þ2=2j2sensed pðxtrueÞ=pðxsensedÞ

The derivative of this posterior with respect to x true must vanish at xestimated. This
allows us to estimate the prior used by each subject. Differentiating and setting to zero we
get

dpðxtrueÞ
dxtrue

1

pðxtrueÞ

#
#
#
#
xestimated

¼ðxestimated 2 xsensedÞ
j2sensed

We assume that x sensed has a narrow peak around x true and thus approximate it by x true.
We insert the j sensed obtained above, affecting the scaling of the integral but not its form.
The average of x sensed across many trials is the imposed shift x true. The right-hand side is
therefore measured in the experiment and the left-hand side approximates the derivative
of log(p(x true)). Since p(x true) must approach zero for both very small and very large x true,
we subtract the mean of the right-hand side before integrating numerically to obtain
log(p(x true)), which we can then transform to estimate the prior p(x true).

Bimodal distribution
Six new subjects participated in a similar experiment in which the lateral shift was
bimodally distributed as a mixture of two gaussians:

pðxtrueÞ ¼
1

2
ffiffiffiffiffiffi

2p
p

jprior
e2ðx2xsep=2Þ2=j2prior þ e2ðxþxsep=2Þ2=j2prior
$ %

where x sep ¼ 4 cm and jprior ¼ 0.5 cm. Because we expected this prior to be more difficult
to learn, each subject performed 4,000 trials split between two consecutive days. In
addition, to speed up learning, feedback midway through the movement was always
blurred (25 spheres distributed as a two-dimensional gaussianwith a standard deviation of
4 cm), and feedback at the end of the movement was provided on every trial. Fitting the
bayesian model (using the correct form of the prior and true jprior) to minimize the MSE
between actual and predicted lateral deviations of the last 1,000 trials was used to infer the
subject’s internal estimates of both x sep and j sensed. Some aspects of the nonlinear
relationship between lateral shift and lateral deviation (Fig. 3a) can be understood
intuitively. When the sensed shift is zero, the actual shift is equally likely to be to the right
or the left and, on average, there should be no deviation from the target. If the sensed shift
is slightly to the right, such as at 0.25 cm, then the actual shift is more likely to come from
the right-hand gaussian than the left, and subjects should point to the right of the target.
However, if the sensed shift is far to the right, such as at 3 cm, then because the bulk of the
prior lies to the left, subjects should point to the left of the target.
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The question of whether it is possible to automate the scientific
process is of both great theoretical interest1,2 and increasing
practical importance because, in many scientific areas, data are
being generated much faster than they can be effectively ana-
lysed. We describe a physically implemented robotic system that
applies techniques from artificial intelligence3–8 to carry out
cycles of scientific experimentation. The system automatically
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不確実性低い 不確実性高い

Fast learning

Low uncertainty High uncertainty

Slow learning

Prospective error hypothesis:  
＊Higher uncertainty causes difficulty in 
predicting error, resulting in slower learning. 

Furthermore, we fit our model to the data from group 1 and
tried to predict the data from groups 2 and 3 (details are provided
in the Fitting our model to data from our experiment section in
Methods). When we fit our model to the forces in force channel
trials and the movement angles in test trials, R2 was 0.9950 and
0.8638, respectively (Fig. 4a,b). The movement angles in the test
phase of groups 2 and 3 could be predicted with R2¼ 0.7967 and
R2¼ 0.7968 (Fig. 4b).

In addition, when our model was used to fit the data sets from
previous studies, the resulting R2 was higher than 0.8240 (Fig. 5,
details are provided in the Fitting our model to data sets from
previous studies section in Methods). These studies investigated
phenomena seemingly unrelated to structural learning and our
behavioural experiment, such as uncertainty effects31 or error size
effects on error modification32, which were separately reproduced
by different computational models, but our PE-based model
could be fit to the data sets. Thus, we expect that the PE-based
model will reproduce diverse features of motor learning in a
unified manner.

Reproduction of other phenomena. Here, we demonstrate that
our PE-based model can also reproduce diverse phenomena that
have previously been explained by different models. We used the
best-fit parameters for group 1 in the numerical simulations
described below.

Effect of uncertainty on learning speed. Motor learning is
hindered when the observed movement error includes uncer-
tainty. For instance, motor-learning speed decreases when the
end-point hand position is blurred3,4. In addition, increased
blurring of the end-point position (higher uncertainty) is
associated with slower learning speed. To explain this effect of
uncertainty, previous studies used a Kalman filter3,4. Because the
uncertainty in the observation of the movement decreases the
Kalman gain and learning rate, the framework using a Kalman
filter can explain how the uncertainty of the observation adversely
influences the motor-learning speed.

Our model also reproduced the detrimental influence of the
uncertainty of the error feedback on motor-learning performance
(Fig. 6). The influence of the uncertainty can be interpreted based on
a recursive equation of motor command (see the Recursive equation
of motor command section in Methods for a detailed analysis):

xtþ 1 ’ l 1# a2

s2 et # êtð Þ2
! "

xt þ ZetA êtð ÞAT êtþ 1ð Þ: ð4Þ

The learning rate is modulated by an inner product A(êt) AT(êtþ 1).
The inner product is maximal when êtþ 1¼ êt and minimal when
êtþ 1 is completely different from êt ; great inaccuracy of the
prediction of the PE (that is, greater uncertainty of error feedback) is
associated with reduced modulation of the learning rate.
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Figure 4 | Results of our behavioural experiment. (a) Generated force at the (tþ 1)-th trial after experiencing a movement error et in the force
channel trials in group 1 (black dotted line, mean±s.e.m., n¼ 12). The green solid line shows the fitting of our model (R2¼0.9950). (b) Actual data
(mean±s.e.m., n¼ 12 for each group) and learning curves predicted by our model (R2¼0.8638 for group 1 (green), R2¼0.7967 for group 2 (red) and
R2¼0.7968 for group 3 (blue)). Notably, the parameters were fit to data from only group 1, and our model predicted the learning curves for groups 2 and 3
with these parameters. Data for the adaptation to the 30! and # 30! visuomotor rotations are included in each group. (c) Histogram of bootstrapped
learning speed. Vertical solid lines denote the mean values of each distribution.
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Figure 5 | Model fitting to data in crcns.org. (a) Data from Körding and Wolpert31. Solid lines show the fit of our model (R2 was 0.9315, 0.9448,
0.9823 and 0.9786 for data of s0, sM, sL and sN, respectively). Dotted lines show actual data (mean±s.e.m., n¼ 10). (b) Data from Wei and Körding32.
Solid line shows the fit of our model (R2 was 0.8947). Dotted line shows actual data (mean±s.e.m., n¼ 7). (c) Data from Thoroughman and Taylor39.
Solid line shows the fit of our model (R2 was 0.8240). Dotted line shows moving average filtered actual data (mean, n¼ 12).
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R2 > 0.93



Theory 2: non-quadratic error (Kording, Wolpert, 2004, PNAS)

!2 "
!vis

2 !prop
2

!vis
2 # !prop

2 (4)

is a function of the variances of the prior and the likelihoods.
In the irrelevant case the visual feedback is not indicative of the

position of the hand and the probability of sensory information
conditional on the visual stimulus being irrelevant; p(xvis,
xprop ! irrelevant) does not depend on xvis. This is because p(xvis,
xprop ! irrelevant) is equal to p(xvis ! irrelevant)p(xprop ! irrelevant) be-
cause xvis and xprop are conditionally independent in the irrelevant
case. p(xvis ! irrelevant) does not depend on xvis because we had
assumed a flat distribution over the irrelevant visual feedback.
p(xprop ! irrelevant) does not depend on xvis either because xvis carries
no information in the irrelevant case. Thus the term p(xvis,
xprop ! irrelevant) is constant in xvis. By combining with Eqs. 2 and 3
and factoring out p(relevant) in the numerator and the denominator,
we can thus rewrite Eq. 1 as

p!relevant ! xvis, xprop" " const
N!xvis, !2"

N!xvis, !2" # c
(5)

where c # p(xvis, xprop ! irrelevant)p(irrelevant)/p(relevant) is a con-
stant in xvis and serves as one of the free parameters in the model.

The subjects were instructed to minimize the distance to the target
and we thus assumed that the cost function they used is the squared
error between the estimated position and the target position (the
distance in depth direction), as shown by

Cost " $p!relevant ! xvis, xprop"!xrelevant $ xtar"
2

# p!irrelevant ! xvis, xprop"!xirrelevant $ xtar"
2% (6)

where xtar is the target position and in our experiment xtar # 0.
Because the cost function is quadratic of the estimated position, the
best estimate to minimize the cost function can be calculated as the
weighted mean of estimated positions from the cases of relevant and
irrelevant visual feedback (Fig. 3C)

x̂ " p!relevant ! xvis, xprop"x̂relevant

# p!irrelevant ! xvis, xprop"x̂irrelevant (7)

where x̂relevant and x̂irrelevant are the optimal estimates of hand position
when the nervous system is certain that the visual feedback is relevant
and irrelevant, respectively. The statistically optimal way to integrate
multimodal sensory cues, under the assumption that all the cues are
relevant, is to weight the cues proportionally to their inverse variances
(e.g., Ernst and Banks 2002). Thus we obtain

x̂relevant "
!prop

2 xvis # !vis
2 xprop

!prop
2 # !vis

2 (8)

If we are interested only in expected values of the estimate of the hand
position, we can drop the term that is proportional to the hand position,
which is usually very close to zero and unbiased (see Fig. 2A)

&x̂relevant' " " !prop
2 xvis

!prop
2 # !vis

2 # (9)

where & ! ' denotes the average over all trials.
In psychophysical experiments it is never possible to directly

measure the subjects’ percepts (i.e., xvis and xprop). However, if we are
interested only in the average estimate as a function of visual error
size, Eq. 7 can be rewritten by dropping the second term since
x̂irrelevant on average is zero. We can also simplify Eq. 8 by recogniz-
ing it is a multiplication of xvis with a scaling factor !prop

2 /(!prop
2 (

!vis
2 ). Then, by combining Eqs. 5, 7, and 9, and acknowledging the fact

that xprop is on average unbiased, we obtain

x̂hand" xvis S
N!xvis, !2"

N!xvis, !2" # c
(10)

where the free parameter s characterizes the magnitude of the influ-
ence of a visual disturbance on future trials. The variable ! charac-
terizes the typical distance up to which a disturbance can still be
explained by the assumption of relevant visual feedback and c is the
free parameter and also a constant that affects the form of
p(relevant ! xvis, xprop) (see Eq. 5).

Estimation of the hand position is affected not only by visual error
at the current trial but also by those from previous trials (Fig. 1D). To
capture this time-varying effect, visual disturbances up to four trials
(identified as trial lag )t # 1, 2, 3, 4) before the current trial were
assessed. The choice of choosing four trials was based on the finding
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FIG. 2. The data from a typical subject. A: deviations from all trials plotted
as a function of the previous visual disturbances ()t # 1). Each dot stands for
a single reach and the gray error bar shows the mean and SE (Note: it is small)
for each visual disturbance type. Data points are spread in the x direction for
better visibility. B: mean deviations are plotted as a function of the size of
visual disturbances for the same typical subject. Each line stands for data from
trials of different lags.
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Furthermore, we fit our model to the data from group 1 and
tried to predict the data from groups 2 and 3 (details are provided
in the Fitting our model to data from our experiment section in
Methods). When we fit our model to the forces in force channel
trials and the movement angles in test trials, R2 was 0.9950 and
0.8638, respectively (Fig. 4a,b). The movement angles in the test
phase of groups 2 and 3 could be predicted with R2¼ 0.7967 and
R2¼ 0.7968 (Fig. 4b).

In addition, when our model was used to fit the data sets from
previous studies, the resulting R2 was higher than 0.8240 (Fig. 5,
details are provided in the Fitting our model to data sets from
previous studies section in Methods). These studies investigated
phenomena seemingly unrelated to structural learning and our
behavioural experiment, such as uncertainty effects31 or error size
effects on error modification32, which were separately reproduced
by different computational models, but our PE-based model
could be fit to the data sets. Thus, we expect that the PE-based
model will reproduce diverse features of motor learning in a
unified manner.

Reproduction of other phenomena. Here, we demonstrate that
our PE-based model can also reproduce diverse phenomena that
have previously been explained by different models. We used the
best-fit parameters for group 1 in the numerical simulations
described below.

Effect of uncertainty on learning speed. Motor learning is
hindered when the observed movement error includes uncer-
tainty. For instance, motor-learning speed decreases when the
end-point hand position is blurred3,4. In addition, increased
blurring of the end-point position (higher uncertainty) is
associated with slower learning speed. To explain this effect of
uncertainty, previous studies used a Kalman filter3,4. Because the
uncertainty in the observation of the movement decreases the
Kalman gain and learning rate, the framework using a Kalman
filter can explain how the uncertainty of the observation adversely
influences the motor-learning speed.

Our model also reproduced the detrimental influence of the
uncertainty of the error feedback on motor-learning performance
(Fig. 6). The influence of the uncertainty can be interpreted based on
a recursive equation of motor command (see the Recursive equation
of motor command section in Methods for a detailed analysis):

xtþ 1 ’ l 1# a2

s2 et # êtð Þ2
! "

xt þ ZetA êtð ÞAT êtþ 1ð Þ: ð4Þ

The learning rate is modulated by an inner product A(êt) AT(êtþ 1).
The inner product is maximal when êtþ 1¼ êt and minimal when
êtþ 1 is completely different from êt ; great inaccuracy of the
prediction of the PE (that is, greater uncertainty of error feedback) is
associated with reduced modulation of the learning rate.
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Figure 4 | Results of our behavioural experiment. (a) Generated force at the (tþ 1)-th trial after experiencing a movement error et in the force
channel trials in group 1 (black dotted line, mean±s.e.m., n¼ 12). The green solid line shows the fitting of our model (R2¼0.9950). (b) Actual data
(mean±s.e.m., n¼ 12 for each group) and learning curves predicted by our model (R2¼0.8638 for group 1 (green), R2¼0.7967 for group 2 (red) and
R2¼0.7968 for group 3 (blue)). Notably, the parameters were fit to data from only group 1, and our model predicted the learning curves for groups 2 and 3
with these parameters. Data for the adaptation to the 30! and # 30! visuomotor rotations are included in each group. (c) Histogram of bootstrapped
learning speed. Vertical solid lines denote the mean values of each distribution.
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Figure 5 | Model fitting to data in crcns.org. (a) Data from Körding and Wolpert31. Solid lines show the fit of our model (R2 was 0.9315, 0.9448,
0.9823 and 0.9786 for data of s0, sM, sL and sN, respectively). Dotted lines show actual data (mean±s.e.m., n¼ 10). (b) Data from Wei and Körding32.
Solid line shows the fit of our model (R2 was 0.8947). Dotted line shows actual data (mean±s.e.m., n¼ 7). (c) Data from Thoroughman and Taylor39.
Solid line shows the fit of our model (R2 was 0.8240). Dotted line shows moving average filtered actual data (mean, n¼ 12).
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Wei & Kording, 2008, Jnp 
Larger error results in slower learning.  

Prospective error hypothesis:  
＊Large error causes difficulty in predicting 
error, resulting in slower learning. 

R2 = 0.8947
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Savings. Savings is a phenomenon in which the adaptation to the
second exposure is faster than that to the first exposure, although
a washout is experienced after the first exposure1,19,23.

Figure 7a,d indicates the result of a simulation of an
experiment in which subjects experience a 30!-visuomotor

rotation (initial learning) followed by a ! 30!-visuomotor
rotation (opposite learning) and then are exposed again to a
30!-visuomotor rotation (relearning). The ! 30!-exposure
appears to eliminate motor memory, but the adaptation was
faster in the relearning phase than in the initial learning,
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Figure 6 | Uncertainty effect. To determine whether our model can explain an uncertainty effect, we simulated an experiment in which the model
adapts to a 30! visual rotation for 50 trials with an observation noise, that is, et¼ pt! xtþ xt, where xt is a Gaussian random noise with a mean of 0 and a

variance of s2
G. When sG is large, uncertainty is large for the observation of the movement error. (a) Trial-by-trial change of xt averaged across 100

simulations. (b ) Adaptation rate after fitting a state-space model xtþ 1¼Axt! Bet to the simulated xt shown in a, where A is a forgetting rate and B is an
adaptation rate. (c) Previously reported adaptation rate (reproduced from Wei and Körding4).
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Figure 7 | Savings. (a–d) To examine our model’s ability to explain the short-term savings effect, we considered an experiment in which a 30! visual
rotation was applied for 30 trials (the initial learning phase), followed by a ! 30! visuomotor rotation for 5 trials (the opposite learning phase), and another
set of the 30! visual rotation for 30 trials (the relearning phase). (a) Trial-by-trial change of pt and xt averaged across 10 simulations of short-term savings.
(b ) The activity of each primitive, with a strong white colour indicating high activity. The red line denotes the prospective error, êt. Vertical dotted lines are
drawn at the trials when the phases switched. The horizontal dotted line denotes the line on which êt¼0. (c) Weighting parameters of each primitive. Blue
and red colours indicate weighting parameters to compensate for perturbations of positive and negative values, respectively. (d) Comparison of xt between
the initial learning and relearning phases. (e) Persistence of the savings effect and its dependence on the forgetting rate (l¼0.9586 (best-fit parameter for
the data of group 1), 9786 or 9986). We simulated an experiment in which a 30! visual rotation was applied for 60 trials (the initial learning phase)
followed by a 0! visuomotor rotation (washout phase), and another set of the 30! visual rotation was imposed for 20 trials (the relearning phase). The
horizontal axis denotes the length of the washout trials. (Inset) comparison of xt between the initial learning and relearning phases. We define the savings
effect as the integral of the grey zone: the difference of xt in the first five trials between the initial learning and relearning phases. This value should be 0 if
there are no savings, and the value is positive when the learning speed in the relearning phase is higher than that in the initial learning phase. The savings
effects were normalized by setting the maximal value to be 1. (f) Previously reported savings by Krakauer et al.18 (adapted by permission from Macmillan
Publishers Ltd: Nature Neuroscience18, copyright 1999).
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Savings. Savings is a phenomenon in which the adaptation to the
second exposure is faster than that to the first exposure, although
a washout is experienced after the first exposure1,19,23.

Figure 7a,d indicates the result of a simulation of an
experiment in which subjects experience a 30!-visuomotor

rotation (initial learning) followed by a ! 30!-visuomotor
rotation (opposite learning) and then are exposed again to a
30!-visuomotor rotation (relearning). The ! 30!-exposure
appears to eliminate motor memory, but the adaptation was
faster in the relearning phase than in the initial learning,
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Figure 6 | Uncertainty effect. To determine whether our model can explain an uncertainty effect, we simulated an experiment in which the model
adapts to a 30! visual rotation for 50 trials with an observation noise, that is, et¼ pt! xtþ xt, where xt is a Gaussian random noise with a mean of 0 and a

variance of s2
G. When sG is large, uncertainty is large for the observation of the movement error. (a) Trial-by-trial change of xt averaged across 100

simulations. (b ) Adaptation rate after fitting a state-space model xtþ 1¼Axt! Bet to the simulated xt shown in a, where A is a forgetting rate and B is an
adaptation rate. (c) Previously reported adaptation rate (reproduced from Wei and Körding4).
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Figure 7 | Savings. (a–d) To examine our model’s ability to explain the short-term savings effect, we considered an experiment in which a 30! visual
rotation was applied for 30 trials (the initial learning phase), followed by a ! 30! visuomotor rotation for 5 trials (the opposite learning phase), and another
set of the 30! visual rotation for 30 trials (the relearning phase). (a) Trial-by-trial change of pt and xt averaged across 10 simulations of short-term savings.
(b ) The activity of each primitive, with a strong white colour indicating high activity. The red line denotes the prospective error, êt. Vertical dotted lines are
drawn at the trials when the phases switched. The horizontal dotted line denotes the line on which êt¼0. (c) Weighting parameters of each primitive. Blue
and red colours indicate weighting parameters to compensate for perturbations of positive and negative values, respectively. (d) Comparison of xt between
the initial learning and relearning phases. (e) Persistence of the savings effect and its dependence on the forgetting rate (l¼0.9586 (best-fit parameter for
the data of group 1), 9786 or 9986). We simulated an experiment in which a 30! visual rotation was applied for 60 trials (the initial learning phase)
followed by a 0! visuomotor rotation (washout phase), and another set of the 30! visual rotation was imposed for 20 trials (the relearning phase). The
horizontal axis denotes the length of the washout trials. (Inset) comparison of xt between the initial learning and relearning phases. We define the savings
effect as the integral of the grey zone: the difference of xt in the first five trials between the initial learning and relearning phases. This value should be 0 if
there are no savings, and the value is positive when the learning speed in the relearning phase is higher than that in the initial learning phase. The savings
effects were normalized by setting the maximal value to be 1. (f) Previously reported savings by Krakauer et al.18 (adapted by permission from Macmillan
Publishers Ltd: Nature Neuroscience18, copyright 1999).
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Savings. Savings is a phenomenon in which the adaptation to the
second exposure is faster than that to the first exposure, although
a washout is experienced after the first exposure1,19,23.

Figure 7a,d indicates the result of a simulation of an
experiment in which subjects experience a 30!-visuomotor

rotation (initial learning) followed by a ! 30!-visuomotor
rotation (opposite learning) and then are exposed again to a
30!-visuomotor rotation (relearning). The ! 30!-exposure
appears to eliminate motor memory, but the adaptation was
faster in the relearning phase than in the initial learning,
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Figure 6 | Uncertainty effect. To determine whether our model can explain an uncertainty effect, we simulated an experiment in which the model
adapts to a 30! visual rotation for 50 trials with an observation noise, that is, et¼ pt! xtþ xt, where xt is a Gaussian random noise with a mean of 0 and a

variance of s2
G. When sG is large, uncertainty is large for the observation of the movement error. (a) Trial-by-trial change of xt averaged across 100

simulations. (b ) Adaptation rate after fitting a state-space model xtþ 1¼Axt! Bet to the simulated xt shown in a, where A is a forgetting rate and B is an
adaptation rate. (c) Previously reported adaptation rate (reproduced from Wei and Körding4).
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Figure 7 | Savings. (a–d) To examine our model’s ability to explain the short-term savings effect, we considered an experiment in which a 30! visual
rotation was applied for 30 trials (the initial learning phase), followed by a ! 30! visuomotor rotation for 5 trials (the opposite learning phase), and another
set of the 30! visual rotation for 30 trials (the relearning phase). (a) Trial-by-trial change of pt and xt averaged across 10 simulations of short-term savings.
(b ) The activity of each primitive, with a strong white colour indicating high activity. The red line denotes the prospective error, êt. Vertical dotted lines are
drawn at the trials when the phases switched. The horizontal dotted line denotes the line on which êt¼0. (c) Weighting parameters of each primitive. Blue
and red colours indicate weighting parameters to compensate for perturbations of positive and negative values, respectively. (d) Comparison of xt between
the initial learning and relearning phases. (e) Persistence of the savings effect and its dependence on the forgetting rate (l¼0.9586 (best-fit parameter for
the data of group 1), 9786 or 9986). We simulated an experiment in which a 30! visual rotation was applied for 60 trials (the initial learning phase)
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effect as the integral of the grey zone: the difference of xt in the first five trials between the initial learning and relearning phases. This value should be 0 if
there are no savings, and the value is positive when the learning speed in the relearning phase is higher than that in the initial learning phase. The savings
effects were normalized by setting the maximal value to be 1. (f) Previously reported savings by Krakauer et al.18 (adapted by permission from Macmillan
Publishers Ltd: Nature Neuroscience18, copyright 1999).
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1. Savings - A-B-A paradigm, faster learning speed in relearning phase -

Krakauer+, 2000,  
Nat Neurosci

indicating that our model reproduced the savings. Notably, in
contrast to previous models that adopt processes with multiple
time constants (that is, slow and fast1,2,20), our model did not
explicitly consider the presence of slow and fast states.

In our model, at the beginning of the initial learning phase, the
motor primitives with preferred PEs close to 30! are activated
(Fig. 7b) and the weighting parameters of these primitives are
modified to decrease the movement error of the 30! rotation
(Fig. 7c). However, as the adaptation proceeds, the movement
error and the PE decrease, and as a result, different primitives are
gradually involved in the decrement of the movement error
(Fig. 7b). Because the motor primitives activated at the beginning
of the initial learning phase are no longer activated during the
latter half of the initial learning phase nor in the opposite learning
phase, the weighting parameters of those primitives remain
unchanged. Thus, when a 30!-perturbation was re-imposed in the
relearning phase, the primitives maintaining the memory are
reactivated, which contributes to accelerating adaptation to the
30!-perturbation relative to the initial learning phase.

Previous studies19,20 have also noted that even the two-state
model comprising fast and slow processes, which was developed
to explain the savings, cannot explain the experimental result
that savings still exist even after a sufficient number of
washout trials following the initial learning phase. As shown in
Fig. 7e, even with a sufficiently long washout phase, our
model can still account for the savings effect when the
forgetting rate is close to 1.

Anterograde interference. Anterograde interference is a phe-
nomenon in which the adaptation to a novel environment (for
example, clockwise visuomotor rotation) interferes with the

subsequent adaptation to another novel environment (for
example, counter-clockwise visuomotor rotation)22,23.

Figures 8a, d demonstrate the results of a simulation in which
the subjects experienced a 30!-visuomotor rotation (initial
learning) followed by a ! 30!-visuomotor rotation (opposite
learning). Adaptation was slower in the opposite learning phase
than in the initial learning phase, indicating that our model
reproduced anterograde interference. The motor primitives
whose preferred PEs were close to 0! were activated in the latter
part of the initial and opposite learning phases (Fig. 8b). The
weighting parameters of these primitives were modified to reduce
the positive movement error in the initial learning phase, but the
content of the motor memory of these primitives needed to be
reversed for the opposite learning phase (Fig. 8c). This reversal
may increase the number of trials needed for the adaptation in the
opposite learning phase. In fact, a longer initial learning phase
was associated with slower adaptation in the opposite learning
phase (Fig. 8e).

Spontaneous recovery. Motor memory is not easily eliminated
once it is formed. After a sufficient amount of force-field training,
a short exposure to the opposing force field appears to reverse the
motor output (that is, the motor memory content). However,
during the forgetting process of the motor memory, the motor
memory for the originally trained force field can be sponta-
neously recovered1. This phenomenon is called spontaneous
recovery1,23,24.

Figure 9a indicates the result of a simulation in which the
subjects experienced a 30!-visuomotor rotation (initial learning
phase) followed by a brief period of a ! 30!-visuomotor rotation
(opposite learning phase) and finally a series of error-clamp trials
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indicating that our model reproduced the savings. Notably, in
contrast to previous models that adopt processes with multiple
time constants (that is, slow and fast1,2,20), our model did not
explicitly consider the presence of slow and fast states.

In our model, at the beginning of the initial learning phase, the
motor primitives with preferred PEs close to 30! are activated
(Fig. 7b) and the weighting parameters of these primitives are
modified to decrease the movement error of the 30! rotation
(Fig. 7c). However, as the adaptation proceeds, the movement
error and the PE decrease, and as a result, different primitives are
gradually involved in the decrement of the movement error
(Fig. 7b). Because the motor primitives activated at the beginning
of the initial learning phase are no longer activated during the
latter half of the initial learning phase nor in the opposite learning
phase, the weighting parameters of those primitives remain
unchanged. Thus, when a 30!-perturbation was re-imposed in the
relearning phase, the primitives maintaining the memory are
reactivated, which contributes to accelerating adaptation to the
30!-perturbation relative to the initial learning phase.

Previous studies19,20 have also noted that even the two-state
model comprising fast and slow processes, which was developed
to explain the savings, cannot explain the experimental result
that savings still exist even after a sufficient number of
washout trials following the initial learning phase. As shown in
Fig. 7e, even with a sufficiently long washout phase, our
model can still account for the savings effect when the
forgetting rate is close to 1.

Anterograde interference. Anterograde interference is a phe-
nomenon in which the adaptation to a novel environment (for
example, clockwise visuomotor rotation) interferes with the

subsequent adaptation to another novel environment (for
example, counter-clockwise visuomotor rotation)22,23.

Figures 8a, d demonstrate the results of a simulation in which
the subjects experienced a 30!-visuomotor rotation (initial
learning) followed by a ! 30!-visuomotor rotation (opposite
learning). Adaptation was slower in the opposite learning phase
than in the initial learning phase, indicating that our model
reproduced anterograde interference. The motor primitives
whose preferred PEs were close to 0! were activated in the latter
part of the initial and opposite learning phases (Fig. 8b). The
weighting parameters of these primitives were modified to reduce
the positive movement error in the initial learning phase, but the
content of the motor memory of these primitives needed to be
reversed for the opposite learning phase (Fig. 8c). This reversal
may increase the number of trials needed for the adaptation in the
opposite learning phase. In fact, a longer initial learning phase
was associated with slower adaptation in the opposite learning
phase (Fig. 8e).

Spontaneous recovery. Motor memory is not easily eliminated
once it is formed. After a sufficient amount of force-field training,
a short exposure to the opposing force field appears to reverse the
motor output (that is, the motor memory content). However,
during the forgetting process of the motor memory, the motor
memory for the originally trained force field can be sponta-
neously recovered1. This phenomenon is called spontaneous
recovery1,23,24.

Figure 9a indicates the result of a simulation in which the
subjects experienced a 30!-visuomotor rotation (initial learning
phase) followed by a brief period of a ! 30!-visuomotor rotation
(opposite learning phase) and finally a series of error-clamp trials
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Figure 8 | Anterograde interference. To determine whether our model could explain this effect, we simulated an experiment in which a 30! visual rotation
for 50 trials (the initial learning phase) was followed by a ! 30! visuomotor rotation for 50 trials (the opposite learning phase). (a) Trial-by-trial change of
pt and xt averaged across 10 simulations. (b ) Activities of each primitive, with a strong white colour indicating high activity. The red line denotes the
prospective error, êt. Vertical dotted line is drawn at the trial at which the initial learning phase switches to the opposite learning phase. The horizontal
dotted line denotes the line on which êt¼0. (c) Weighting parameters of each primitive. Blue and red colours indicate weighting parameters to compensate
for perturbations of positive and negative values, respectively. (d) Comparison of xt between the initial learning and opposite learning phases. In the
opposite learning phase, the negative part of xt is drawn (red line in a). (e) Trial-by-trial change of xt in the opposite learning phase. Each dotted line
denotes the dependence of xt on the length of the initial learning phase. (f) Previously reported savings by Sing and Smiath22 (reproduced from a previous
study22).
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indicating that our model reproduced the savings. Notably, in
contrast to previous models that adopt processes with multiple
time constants (that is, slow and fast1,2,20), our model did not
explicitly consider the presence of slow and fast states.

In our model, at the beginning of the initial learning phase, the
motor primitives with preferred PEs close to 30! are activated
(Fig. 7b) and the weighting parameters of these primitives are
modified to decrease the movement error of the 30! rotation
(Fig. 7c). However, as the adaptation proceeds, the movement
error and the PE decrease, and as a result, different primitives are
gradually involved in the decrement of the movement error
(Fig. 7b). Because the motor primitives activated at the beginning
of the initial learning phase are no longer activated during the
latter half of the initial learning phase nor in the opposite learning
phase, the weighting parameters of those primitives remain
unchanged. Thus, when a 30!-perturbation was re-imposed in the
relearning phase, the primitives maintaining the memory are
reactivated, which contributes to accelerating adaptation to the
30!-perturbation relative to the initial learning phase.

Previous studies19,20 have also noted that even the two-state
model comprising fast and slow processes, which was developed
to explain the savings, cannot explain the experimental result
that savings still exist even after a sufficient number of
washout trials following the initial learning phase. As shown in
Fig. 7e, even with a sufficiently long washout phase, our
model can still account for the savings effect when the
forgetting rate is close to 1.

Anterograde interference. Anterograde interference is a phe-
nomenon in which the adaptation to a novel environment (for
example, clockwise visuomotor rotation) interferes with the

subsequent adaptation to another novel environment (for
example, counter-clockwise visuomotor rotation)22,23.

Figures 8a, d demonstrate the results of a simulation in which
the subjects experienced a 30!-visuomotor rotation (initial
learning) followed by a ! 30!-visuomotor rotation (opposite
learning). Adaptation was slower in the opposite learning phase
than in the initial learning phase, indicating that our model
reproduced anterograde interference. The motor primitives
whose preferred PEs were close to 0! were activated in the latter
part of the initial and opposite learning phases (Fig. 8b). The
weighting parameters of these primitives were modified to reduce
the positive movement error in the initial learning phase, but the
content of the motor memory of these primitives needed to be
reversed for the opposite learning phase (Fig. 8c). This reversal
may increase the number of trials needed for the adaptation in the
opposite learning phase. In fact, a longer initial learning phase
was associated with slower adaptation in the opposite learning
phase (Fig. 8e).

Spontaneous recovery. Motor memory is not easily eliminated
once it is formed. After a sufficient amount of force-field training,
a short exposure to the opposing force field appears to reverse the
motor output (that is, the motor memory content). However,
during the forgetting process of the motor memory, the motor
memory for the originally trained force field can be sponta-
neously recovered1. This phenomenon is called spontaneous
recovery1,23,24.

Figure 9a indicates the result of a simulation in which the
subjects experienced a 30!-visuomotor rotation (initial learning
phase) followed by a brief period of a ! 30!-visuomotor rotation
(opposite learning phase) and finally a series of error-clamp trials
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Figure 8 | Anterograde interference. To determine whether our model could explain this effect, we simulated an experiment in which a 30! visual rotation
for 50 trials (the initial learning phase) was followed by a ! 30! visuomotor rotation for 50 trials (the opposite learning phase). (a) Trial-by-trial change of
pt and xt averaged across 10 simulations. (b ) Activities of each primitive, with a strong white colour indicating high activity. The red line denotes the
prospective error, êt. Vertical dotted line is drawn at the trial at which the initial learning phase switches to the opposite learning phase. The horizontal
dotted line denotes the line on which êt¼0. (c) Weighting parameters of each primitive. Blue and red colours indicate weighting parameters to compensate
for perturbations of positive and negative values, respectively. (d) Comparison of xt between the initial learning and opposite learning phases. In the
opposite learning phase, the negative part of xt is drawn (red line in a). (e) Trial-by-trial change of xt in the opposite learning phase. Each dotted line
denotes the dependence of xt on the length of the initial learning phase. (f) Previously reported savings by Sing and Smiath22 (reproduced from a previous
study22).
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3. Spontaneous recovery - recovery of memory trained for a long time -

in which the movement error was constrained to 0 (error-clamp
trials). At the end of the opposite learning phase, the motor
memory for the 30!-visuomotor rotation appeared to be
completely eliminated, but the motor memory re-emerged during
the error-clamp trials, indicating that our model successfully
reproduced spontaneous recovery.

A sufficient amount of initial training trials resulted in a PE of
almost 0, and almost all of the motor primitives involved in
compensating for the 30!-visuomotor rotation had preferred PEs
that were close to 0 (Fig. 9c). However, during the subsequent
opposite learning phase, the number of training trials was small
and the adaptation was accomplished while the PE did not
converge to 0. Thus, the motor primitives involved in the
opposite learning phase had PEs that were different from 0,
indicating that the motor memory formed in the initial learning
phase was not overwritten (Fig. 9d). In the error-clamp trials, the
PE gradually approached 0, which reactivated the motor memory
embedded in the motor primitives involved in the initial learning
phase, leading to a spontaneous recovery of the motor memory.

Discussion
We propose a novel motor-learning model based on motor
primitives. Our model assumes that each primitive is activated by
a PE, based on both theoretical consideration of how motor
memory can be formed and maintained in a randomly varying
environment and previous neurophysiological findings showing
that some neurons encode a PE for online movement control16,17.
To validate our model, we confirmed its novel prediction that
motor-learning speed in response to a constant amount of
perturbation is increased after experiencing the same movement

errors in two or three consecutive trials. This phenomenon
cannot be predicted by conventional computational models,
assuming that the recruitment of the motor primitives is
determined only by the planned movement direction10–12, by
Bayesian framework3 nor by reinforcement learning based on
‘reward’28–30. In addition, this facilitatory effect cannot be
explained by a previous model where an update of the motor
command depended on the executed movement directions13,
because the hand-movement direction in our experiment was
kept identical to the target direction using the force channel.
Although it is possibile that the update of the motor command
depends on the cursor movement directions (see Discussion in
Gonzalez-Castro et al.13), this framework cannot solely explain
why a blurred end-point position decreases the learning rate; if
movement error is linearly processed, the ensemble-averaged
movement errors are the same between blurred and non-blurred
conditions, E[etþ xt]¼ E[et], where xt denotes uncertainty. In
contrast, our behavioural experiment validated our novel
prediction (Fig. 4).

Our model also has strong power to explain a wide variety of
other motor-learning-related phenomena1–8,19,20,22,23. Although
different models have been conventionally proposed to explain
different types of phenomena, our model can explain these
phenomena in a unified manner (that is, in a single model with
the same parameters) (Figs 2 and 6–9).

To account for phenomena such as savings, anterograde
interference and spontaneous recovery, recent computational
studies have proposed that a motor memory has multiple time
constants (that is, fast and slow processes1,2,20,22,33). Conversely,
our model does not explicitly assume the presence of fast and
slow motor-learning processes. Nevertheless, our model was able
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Figure 9 | Spontaneous recovery. We simulated an experiment in which a 30! visual rotation for 50 trials (the initial learning phase) was followed by a
# 30! visuomotor rotation for 5 trials (the opposite force-learning phase), and error-clamp trials were imposed. In the simulation of the error-clamp trials,
the movement error, et, was forcibly set to 0!. (a) Trial-by-trial change of pt and xt averaged across 10 simulations. (b ) Previously reported spontaneous
recovery (reproduced from Smith et al.1). (c) Activities of each primitive, with a strong white colour indicating high activity. Vertical dotted lines
are drawn for the trials when the phases switched. Horizontal dotted line denotes the line on which êt¼0. (d) Weighting parameters for each primitive.
Blue and red colours indicate weighting parameters to compensate for perturbations of positive and negative values, respectively.
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in which the movement error was constrained to 0 (error-clamp
trials). At the end of the opposite learning phase, the motor
memory for the 30!-visuomotor rotation appeared to be
completely eliminated, but the motor memory re-emerged during
the error-clamp trials, indicating that our model successfully
reproduced spontaneous recovery.

A sufficient amount of initial training trials resulted in a PE of
almost 0, and almost all of the motor primitives involved in
compensating for the 30!-visuomotor rotation had preferred PEs
that were close to 0 (Fig. 9c). However, during the subsequent
opposite learning phase, the number of training trials was small
and the adaptation was accomplished while the PE did not
converge to 0. Thus, the motor primitives involved in the
opposite learning phase had PEs that were different from 0,
indicating that the motor memory formed in the initial learning
phase was not overwritten (Fig. 9d). In the error-clamp trials, the
PE gradually approached 0, which reactivated the motor memory
embedded in the motor primitives involved in the initial learning
phase, leading to a spontaneous recovery of the motor memory.

Discussion
We propose a novel motor-learning model based on motor
primitives. Our model assumes that each primitive is activated by
a PE, based on both theoretical consideration of how motor
memory can be formed and maintained in a randomly varying
environment and previous neurophysiological findings showing
that some neurons encode a PE for online movement control16,17.
To validate our model, we confirmed its novel prediction that
motor-learning speed in response to a constant amount of
perturbation is increased after experiencing the same movement

errors in two or three consecutive trials. This phenomenon
cannot be predicted by conventional computational models,
assuming that the recruitment of the motor primitives is
determined only by the planned movement direction10–12, by
Bayesian framework3 nor by reinforcement learning based on
‘reward’28–30. In addition, this facilitatory effect cannot be
explained by a previous model where an update of the motor
command depended on the executed movement directions13,
because the hand-movement direction in our experiment was
kept identical to the target direction using the force channel.
Although it is possibile that the update of the motor command
depends on the cursor movement directions (see Discussion in
Gonzalez-Castro et al.13), this framework cannot solely explain
why a blurred end-point position decreases the learning rate; if
movement error is linearly processed, the ensemble-averaged
movement errors are the same between blurred and non-blurred
conditions, E[etþ xt]¼ E[et], where xt denotes uncertainty. In
contrast, our behavioural experiment validated our novel
prediction (Fig. 4).

Our model also has strong power to explain a wide variety of
other motor-learning-related phenomena1–8,19,20,22,23. Although
different models have been conventionally proposed to explain
different types of phenomena, our model can explain these
phenomena in a unified manner (that is, in a single model with
the same parameters) (Figs 2 and 6–9).

To account for phenomena such as savings, anterograde
interference and spontaneous recovery, recent computational
studies have proposed that a motor memory has multiple time
constants (that is, fast and slow processes1,2,20,22,33). Conversely,
our model does not explicitly assume the presence of fast and
slow motor-learning processes. Nevertheless, our model was able
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1. Based on math to reproduce random learning, we propose a novel 
hypothesis: the prospective error is encoded in motor planning. 

2. Based on our behavioral experiment, we validated our prediction which any 
conventional model never predicts - strong prediction power -. 

3. Our model can explain several phenomena which were separately explained 
by different computational models - a step towards a unified model of motor 
learning -. 
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Is prospective coding effective 
when there are other players?

・I will succeed 
・I will fail

Competitive game influences risk-sensitivity in motor decision-making 
Keiji Ota1)2), Takuji Hayashi1)2), & Ken Takiyama1)   

1) Dept. of Engineering, Tokyo Univ. of Agriculture and Technology 
2) Post-doctral Fellow of  Japan Society for Promotion of Science  316.2 

１. Introduction 

２. Methods 
A. Experimental setup 

Screen 

Pen-tablet 

B. Gain function C. Trial sequence of  
    a competitive task 

Quick out-and-back reaching 
movement on a pen-tablet. 
The endpoint of each movement was 
recorded.  

Start 

Endpoint 

Decision about  
where to aim for 

D. Experimental protocol 

Individual task:  Players were required to maximize the total scores in each game.  

Competitive task:  Players competed for the total scores with a computer or human opponent.  

E. Estimating player’s risk-sensitivity based on Bayesian decision theory 

Optimal aiming point for maximizing the expected gain can be calculated by integral of 
the motor output distribution with the gain function (1&2).  
We then compared the optimal aiming point with player’s actual aiming point (3).  
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３. Results (Motor decision strategy in the first game) 

Fig. 1. Time series of reaching endpoint in individual and competitive task. 
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Exp.2: Competition started after the 
observation of an opponent behavior.  

Fig.2. Influence of uncertainty of a 
computer opponent.  
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Exp.3: Competition started after the 
repetitive practice of the individual task. 

Fig.3. Influence of player’s movement 
accuracy.  
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Fig.4. Influence of human opponent.  
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４. Results (Motor decision strategy after the second game) 
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Players adaptively changed the aiming point according to the 
opponent. Win-stay lose-shift strategy accounted for their behavior.  

N = 9 N = 8 N = 9 Mean ± SE 

Player 
Computer 

Risk-neutral condition Risk-averse condition Risk-neutral/averse condition 

Win-stay lose-shift strategy 
𝐸𝑡+1 = 𝐸𝑡 + 𝛼 𝑒𝑐𝑜𝑚, 𝑡  − 𝐸𝑡 + 𝐵  

 𝛼 →  
 𝛼𝑤𝑖𝑛    𝑖𝑓 𝑒𝑐𝑜𝑚, 𝑡 < 𝐸𝑡
 𝛼𝑙𝑜𝑠𝑒   𝑖𝑓 𝑒𝑐𝑜𝑚, 𝑡 > 𝐸𝑡

 

𝐸𝑡+1 = 𝐸𝑡 + 𝛼𝑡𝑓𝑡 𝑒𝑐𝑜𝑚, 𝑡  − 𝐸𝑡 + 𝐵  

Tit-for-tat strategy 
(follows an opponent’s movement) 

５. Modelling of the initial strategy 
Initial risk-averse behavior can be accounted by WSLS model? 
Model assumption 
1) Aim point at t trial is updated by 𝐸𝑡+1 = 𝐸𝑡 + 𝑆𝑡, where 𝑆𝑡 is the shift size  
    which is determined by win-stay lose-shift updating rule.  

𝑆𝑡 →    
𝛼𝑤𝑖𝑛 𝑒𝑐𝑜𝑚, 𝑡  − 𝑒𝑡    𝑖𝑓  𝑒𝑡 ≥ 𝑒𝑐𝑜𝑚, 𝑡

𝛼𝑙𝑜𝑠𝑒 𝑒𝑐𝑜𝑚, 𝑡  − 𝑒𝑡    𝑖𝑓  𝑒𝑡 < 𝑒𝑐𝑜𝑚, 𝑡
  

2) We resampled 𝐸𝑡, 𝐸𝑡+1, 𝐸𝑡+2 and calculated the expected gain of each aim    
     point by 𝐸𝐺𝑡 =  𝑃 𝑒𝑡 𝐸𝑡 ∙ 𝐺𝐹 𝑒𝑡 𝑑𝑒. 

3) Expected gain at t trial is discounted with time. Thus, the discounted sum of  
    future rewards in an initial aim point can be defined as follows.  

 𝑉 𝐸1, 𝛾 = 𝐸𝐺1 +  𝛾𝑘
𝑘=1 𝐸𝐺𝑘+1 

𝑒𝑡: 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑎𝑡 𝑡 𝑡𝑟𝑖𝑎𝑙 
𝑒𝑐𝑜𝑚,𝑡: 𝑜𝑝𝑝𝑜𝑛𝑒𝑡 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑎𝑡 𝑡 𝑡𝑟𝑖𝑎𝑙 

𝛼: 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 

𝛾: 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 (0 ≤ 𝛾 ≤ 1)  

Exp.4: Competition with human opponent. 

６. Conclusion 

 D
is

co
un

te
d 

su
m

 o
f f

ut
ur

e 
re

w
ar

ds
 in

 a
n 

in
iti

al
 a

im
 

po
in

t, 
 𝑉

𝐸 1
,𝛾

 

Aim point at first trial, 𝐸1 
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・As motor decision strategy in a competitive   
   situation, players take risk-averse behavior   
   against a first sight opponent and adaptively  
   change their aiming point according to the  
   outcome of the game (WSLS) thereafter.  

・The initial risk-averse behavior may be  
   optimal for maximizing future rewards  
   anticipating lose-shift in future trial. 

・ Recent studies have investigated risk-sensitive decision process in   
   sensory motor tasks. (Wu et al., PNAS, 2009; Braun et al., Front Hum Neurosci, 2011) 

・ Humans show risk-seeking or risk-averse motor decision. 
   This risk-sensitivity is robust within individuals. 
                                                         (Nagengast et al., JNP, 2011; Ota et al ., Sci Rep, 2016) 

・ However, previous studies have used the motor tasks that participants   
   performed alone, thus, the inter-individual interaction has been overlooked. 

Here this study investigated  
the features of motor decision-making in a competitive situation. 

Where you aim 
 in the presence of an opponent? 

Competitive task 
(12 games) 

Individual task 
(5 games) 

10 trials 

Time 

(1) (2) (3) 

Players show risk-averse behavior at an initial game of the competitive task  
even though they were risk-seeking in the individual task.  

Difference of endpoint between 
player and opponent 

𝑒𝑡 − 𝑒𝑐𝑜𝑚,𝑡  [𝑐𝑚] 
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+
1
−
𝑒 𝑡

 [𝑐
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* * 

* * 
* * 

* * 
* *  * n.s. * 

 * *  * *  * *  * * 
Compensation  

around own aim point 

Larger 
compensation  
when loosing 

 than when wining 
(lose-shift) 

Small 
compensation  

until 2 cm 
(win-stay) 

Keiji Ota 
(TUAT / NYU)

Ota & Takiyama, in preparation, Ota & Takiyama, 2017, SfN
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